Spherical Regression
نویسندگان
چکیده
منابع مشابه
Assessing Geometric Integrity through Spherical Regression Techniques
Traditional methods of assessing the geometric integrity of any nely engineered product requires the use of xtures. The t is then tested with a feeler gauge. Fixtures are expensive to construct and transport and the degree of accuracy obtained may be insu cient, depending on the tolerance speci ed by the procurer of the part. In this paper, we discuss an alternative scienti c approach to assess...
متن کاملNonparametric regression using needlet kernels for spherical data
Abstract. Needlets have been recognized as state-of-the-art tools to tackle spherical data, due to their excellent localization properties in both spacial and frequency domains. This paper considers developing kernel methods associated with the needlet kernel for nonparametric regression problems whose predictor variables are defined on a sphere. Due to the localization property in the frequenc...
متن کاملRegression Modeling for Spherical Data via Non-parametric and Least Square Methods
Introduction Statistical analysis of the data on the Earth's surface was a favorite subject among many researchers. Such data can be related to animal's migration from a region to another position. Then, statistical modeling of their paths helps biological researchers to predict their movements and estimate the areas that are most likely to constitute the presence of the animals. From a geome...
متن کاملRegularized Least Square Regression with Spherical Polynomial Kernels
This article considers regularized least square regression on the sphere. It develops a theoretical analysis of the generalization performances of regularized least square regression algorithm with spherical polynomial kernels. The explicit bounds are derived for the excess risk error. The learning rates depend on the eigenvalues of spherical polynomial integral operators and on the dimension o...
متن کاملA Comparison of Thin Plate and Spherical Splines with Multiple Regression
Thin plate and spherical splines are nonparametric methods suitable for spatial data analysis. Thin plate splines acquire efficient practical and high precision solutions in spatial interpolations. Two components in the model fitting is considered: spatial deviations of data and the model roughness. On the other hand, in parametric regression, the relationship between explanatory and response v...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Annals of Statistics
سال: 1986
ISSN: 0090-5364
DOI: 10.1214/aos/1176350041